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Noise-induced transition from translational to rotational motion of swarms
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We consider a model of active Brownian agents interacting via a harmonic attractive potential in a two-
dimensional system in the presence of noise. By numerical simulations, we show that this model possesses a
noise-induced transition characterized by the breakdown of translational motion and the onset of swarm
rotation as the noise intensity is increased. Statistical properties of swarm dynamics in the weak noise limit are
further analytically investigated.
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[. INTRODUCTION localized state. An interesting example of a localized swarm
) ) state is a rotating flock of finite extent, seen in the simula-
In different natural and social systems, agents formions of a discrete model of self-propelling particles and de-
groups characterized by cooperative coherent mofin  scribed analytically within a continuum active fluid approxi-
Such collective swarm motions have been observed and irmation[23] (see alsd19]).
vestigated in bacterial populatiorj2—6], in slime molds Localized states of swarms may undergo transitions lead-
[7-10], for ants[11,12 and fish[13-15, in the motion of ing to new dynamical regimes, when the system parameters
pedestriand 16], and for the car traffid17]. To describe or the noise intensity are gradually changed. In a previous
these phenomena, various models of collective coherent mgublication[40], a noise-induced transition from the local-
tion in populations of self-propelled or self-driven particles ized state with translational motion to a state with incoherent
have been proposddee[18,19). Some of them are formu- oscillations without translational motion was investigated
lated in terms of interacting automata located on a lattice opumerically and analytically for a one-dimensional system of
having continuous coordinaté20-23. A different class of interacting seI_f—pr_opeIIed pa_lrtlcles. In the present grt|cl_e, we
models is based on dynamical equations for individual self€xtend investigations of this system to two spatial dimen-

propelled particles, including velocity-dependent negative>OnS- We study here a population of self-propelied particles

friction terms to account for their active motion and assum—!"‘ter""ct.ing via a pa_rabolic interaction potentia] correspond-
ng to linear attracting forces between the pairs. In the ab-

ing that interactions between the particles are described b hce of noise. this dvnamical system has two kinds of at-
some binary potentials. This latter approach has been used § ’ y Y

henomenologically characterize motion of biological organ- actors, corresponding, respectively, to a compact traveling
p gically 9 Y98N 5tate of the entire population and to a state where it rotates as

isms 24,29, individual blood cells[26,27, and humans .o ey without any global translational motion. The aim of
[16,28, and to describe the behavior of physical particles y 9 '

. ) . . our study is to investigate the effects of noise on translational
with energy depot$29-32. Effective dynamical equations y Y

ith velocity-d dent fricti d b , v d swarm motion. We find that the system is highly sensitive to
with velocity-dependent friction could be approximately de- g, pastic forces. When noise is present, the traveling swarm
rived for floating particles which propel themselves by re-

. . ; ) .~ is a cloud of particles characterized by different dispersions
leasing surfactant into the medid®3]. Continuum approxi- P y P

. . . . in the directions parallel and transverse to the direction of
mations to Q|screte particle models, hydrodynamical mOdel‘?‘ransIational motion. Our numerical simulations confirmed
of active fluids, have been proposgi®,34-3§.

" ¢ all dels is that th by an approximate analytical study show that the mean-
e common property of all swarm models Is that theyqq, a6 ransverse dispersion of a swarm is proportional to the

fShOW tr:je_ ergergsnce of g%heregt coIIe<|:t|v_e f(quws _Start'nf%quare root of the noise intensity, whereas its dispersion
rom a disordered state with random velocity directions of,nnq the direction of motion depends linearly on the noise

ibndividual pa_rti(ile_s(agen& Sdu?h kinetic transitions have intensity. Therefore, for weak noises the swarm looks like a
egr_\ e>r<]terf13|ve y mxesftlr?age d or aqtomgta ?}’]Stéz?q q pancake oriented orthogonally to the motion direction. When
and in the framework of hydrodynamif34,37). The ordered o 1oise is increased, the swarm gradually acquires a more

states of swarms can represent simple translational motion %Slmmetric shape. For strong noise, we find that the transla-

be chara_cterized by vortex flows. B.Oth Spatia!ly .diStribUtedtionaI motion of a swarm becomes suddenly impossible and
and localized swarm states are possible. In a distributed statg, abruptly replaced by a rotational regime with a vortex

the population fills the entire available medium. In contrasty o The detailed formulation of the model is presented in

to this, the population forms compact spatial groups in &he next section. In Sec. Il we describe the results of nu-
merical simulations. The statistical properties of a traveling
swarm in the weak noise limit are approximately explained

*Electronic address: udo.erdmann@physik.hu-berlin.de by an analytical theory which is constructed in Sec. IV. The
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paper ends with conclusions and discussion of the obtained300 and the coefficiera specifying the strength of inter-
results. actions between the particles was seatdl00. To produce a
traveling localized state of the swarm, special initial condi-
II. THE MODEL tions were used. At timé=0, all particles had identical po-
sitions and velocities and the noise was switched only a little
We consider a swarm formed yidentical self-propelled |ater, at timet=30.
particles of unit mass interacting via an attractive parabolic several statistical characteristics of the swarm were moni-
pair potential. The dynamics of the system is given by thegred during simulations. The center of m&ef the swarm
following set of evolution equations: and its mean velocityv at time t were defined asR(t)
P (13 =(1/N)Z;r;(t) and V(t)=(1/N)Z,v;(t), respectively. Because
b the cloud of traveling particles in the presence of noise was
N anisotropic, we also determined its instantaneous mean-
v =F - EE (ri=r) +&(0). (1b) square dispersio_ns iq the di_rec.tions paral&)] and orthogo- .
NiZ nal (S,) to the direction of its instantaneous mean velocity

. . . V. They were defined as
The forcesF; depend on the particle velocity and are intro-

duced to take into account active motion of particles. We 1 N
choose them in the form St = MZ {ri(® -R®]- V(1) (33
i=1
Fi=(1-v)v, 2)
so that, in the absence of noise and interactions, the particle 1 X )
acquires the unit velocity =1. Additionally, the particles are SHUE Mil {ri®-ROIXV®}F.  (3b)
1=

subject to stochastic white forcésof strengthD which are

independent for different particles and are characterized by qgitionally, angular momenta of all particles with respect to
the correlation functions the mass center were determined as

G220, (EOGE)=2DAL=1)3;. Li() =[rt) = ROT X [vi(®) = V(0] @

This model has previously been introduced 40]. It is Figure Xa) shows the time dependence of the magnitude

phenomenological, but rather general because it can he ! : ) .
viewed as a normal form for a population of particles near tz}?_'\/' of the mean swarm velocity for two simulations with

supercritical bifurcation corresponding to spontaneous onsé_{'g%rgnt NoIse. (;Nh(_an tlhe dn0|se IS refllatwely_ We@ h
of active motion(see[19]). In this model, attractive interac- - 0:067 its introduction leads to some fluctuations in the

tions between particles have an infinite range and grow lininstantaneous swarm velocity and a decrease of its average
early with the separation between them. Because we shdfVel- If @ stronger nois¢D=0.07) is applied, the swarm
consider only spatially localized states of the population, our€locity first behaves as for the weaker noise, but then
results will hold, however, also for the situations when inter-abruptly drops down to a value close to zero. This sudden
actions are characterized by a finite range, but it is mucﬁransnlon corresponds to the breakdown of translational mo-

larger than the mean swarm diameter. It should be noted thdion of the swarm. In Fig. (b) we have plotted the time-
in a different context, the moddtl) has been considered averaged swarm velocitf/) as a function of the noise in-

already by Rayleigti41]. tensity D. The average velocity gradually decreases with
The study of the one-dimensional version of the mddgl hoise, until the breakdown occurs at 0.66l0 <0.070.
has shown that, as the noise intendityjis increased, spon- In the state with translational motion at relatively weak

taneous breakdown of translational swarm motion take&Oise, the direction of the swarm motion does not remain
place herd40]. Some statistical properties of translational constant with time. The swarm travels along a complex tra-
swarm motion in the two-dimensional modél) (with a  jectory, part of which is shown in Fig. Bsuch trajectories
slightly different choice of the forceB;) have subsequently should correspond to the Brownian motion of the entire
been discussedi2]. For the case of two interacting particles swarm. In the inset in this figure, we display the distribution
(N=2), the rotational modes were described[82], where  Of particles in the swarm at s_ome_tim_e moment. It can be
simulations for small rotating clusters consisting of 20 par-noticed that the cloud of particles is significantly squeezed
ticles have also been reported. The aim of the present work @l0ong the direction of swarm motion. o
to perform systematic numerical and analytical investiga- Figure 3 shows the computed average longituditgl
tions of the behavior described by this two-dimensional@nd transverséS, ) dispersions as functions of the noise in-
model. tensity D. For weak noiseS, =S so that the swarm is
strongly squeezed. As noise increases, the shape of the
IIl. NUMERICAL SIMULATIONS swarm becomes more symmetric and the transversal disper-
sion approaches the dispersion along the direction of trans-
Numerical integration of Eqs(1) was performed using lational motion. Finally, after the breakdown of translational
the Euler scheme with the constant time step of 0.001. In alinotion has taken place for a sufficiently strong noise, the
simulations, the total number of particles was fixedNo swarm becomes statistically circuléd, =S)).
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' ' FIG. 2. Motion of the center of mass of the swafB00 par-
ticles) within a certain time window for noise below a critical one.
Fort=1140 the corresponding snapshot of the swarm is shown. The
big black arrow in the inset shows the mean swarm velocity; the
noise intensity iD=0.067.

vI

peak atL=0 [Fig. 6(a)]. In contrast to this, in the rotational
state the distribution has two symmetrically placed peaks
corresponding to a certain nonvanishing momenfufiy.
6(b)]. Note that the particles inside the ring are rotating in

T both the clockwise and counterclockwise directions, and the
numbers of particles rotating in each direction are approxi-
. . mately equal. Thus, the swarm does not rotate as a whole and
0.1 0.15 0.2 its total angular momentum remains zero on the average.
D This behavior is a consequence of the fact that only long-
range attractive interactions between particles are present in
the considered model. It can be expected that, if short-range
repulsive interactions are additionally introduced, the break-
down of the rotational symmetry in the ring would occur and
one of the rotation directions would be selecféd].

FIG. 1. (a) Time evolution of the mean velocity of a swarm
before(solid line, D=0.067 and after(dashed lineD=0.070 the
stochastic breakdown of the translational mo@®.Mean velocity
of the swarm with increasing noise strength. At a critical noise
strength a sharp transition in the behavior of the swarm odsaes

also Fig. 4. IV. THE WEAK NOISE LIMIT

The sequence of snapshots in Fig. 4 displays temporal Our numerical simulations have shown that, for weak
evolution of the swarm when the noise intensity exceeds th%oise the swarm is strongly squeezed in the direction along
breakdown threshold. Initially, the swarm is traveling and its '
shape is similar to that characteristic for the weaker n@fe
Fig. 2. However, in the course of time the swarm slowly
acquires a ring shape, with particles rotating around its cen-
ter. This rotating ring structure corresponds to a state where 0.004
translational motion of the entire swarm is already absent.

A different visualization of the process accompanying the
breakdown of translational motion and the transition to a
rotating swarm is chosen in Fig. 5. Here we show the trajec-
tory of motion of the center of mass of the swafsolid line)
together with the trajectory of motion of one of its particles
(dashed ling We see that, in a traveling swarm, the particles
perform irregular oscillations around its instantaneous mass
center. When the translational motion is terminated and the y
rotating ring is formed, such oscillations become trans- 0%
formed into rotations around the ring center.

To provide statistical description of particle motions in the
traveling and rotating states of the swarm, angular momen- FIG. 3. Behavior of the longitudindkolid line (+)] and trans-
tum distributionsP(L) have been computed. For the stateversal[dashed lingx)] dispersions of the swarm with increasing
with translational motion, the distribution has a single centrahoise.
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FIG. 4. Several sequential snapshots of a swarm with 300 pal
ticles during the transition from translational motion to the rota-
tional mode; the noise intensity 3=0.070.

its center-of-mass motion and its longitudinal and transverse
dispersions are strongly different. Below we derive approxi-
mate analytical expressions f§ andS, in the limit of the
small noise intensityp — 0.

First, we note that in this limit the motion of the center of
mass of the swarm will remain approximately linear within
very long times or, in other words, the swarm velocity
remains approximately constant on the short time scales
characteristic for the motions of individual particles inside
the traveling swarm. We introduce the coordinate system in
such a way that itx axis is parallel to the direction of the
swarm motion and ity axis is orthogonal to it. The coordi-
natesx;, andy; of all particles forming the swarm can be
written asx,=X+8x; andy;=Y+48y; whereX andY are the
coordinates of the swarm center By our choice, we have
Y=0, so thaty,=6y;.

To derive the evolution equation fof, we notice that

051904-4
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FIG. 5. The trajectories of the center of masslid line) and of
a single particle(dashed ling are shown above the critical noise
strength(for D=0.070.

©)

Summing up the evolution equations for &l| we approxi-

(6)

where we have neglected the terms with higher powers of the
velocity fluctuationssx; andy;.

: In the statistical steady staté=V=const and Eq(6) is
] reduced to the equation

()

determining the velocity of swarm motion in the presence of
Ir_1oise. Its solution for the traveling swarf¥ # 0) is

(8

FIG. 6. Distribution of angular momenta of the particl@s in

the traveling(D=0.067% and (b) rotating(D=0.070 swarms.
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The evolution equation fobx; can be obtained by sub- . S 3 5,
tracting Eq.(6) from the equation for the variabbe in the n=oX|7*)n- 5@ |77+ £() (15
model (1). Keeping only the leading terms, linear in devia-
tions from the mass center, we get where the complex-valued white noigét) has correlation
} ) functions
&(i + 26)(| + aé)(i = éf((t) . (9)

N\ — * 1\ — D ’
This is an evolution equation for a damped harmonic oscil- (€0)y=0, {LOLL))=0, LOLE')= z_a,za(t_t )-
lator. Note that fluctuations of;(t) are not coupled to the

transverse componegi(t). This stochastic Langevin equation corresponds to the fol-
In a similar way, the evolution equation for the transversg®Wing Fokker-Planck equation for the probability density
deviationsy;(t) can be obtained, P=P(7n,7 ,b):
.. . . P J 3
¥i = (L=VA)y; + 2Vaxy; + V7 +ay = &(b). (10) E:‘a_n[w<<|77|z>77‘§|77|2) ﬂp]
In this equation, we have retained nonlinear terms. This is J , 3, 1) - 1 PP
done because such terms are essential for the damping of T | (| 7] >77—§|77| n P +2—2Da o
oscillations of the transverse component. K @ non
Indeed, if such terms were neglected, we would have (16)
Vi — (1 = V?)y; +ay; = &(t). (11) The stationary solutiorP of the Fokker-Planck equation

reads
Because, as follows from Eq@8), we haveV?<1, oscilla-
tions in y; will then exponentially grow with time. Thus, Y —24(— |7l + 37 17
nonlinear terms play a principal role for transverse fluctua- Tz D KU K
tions and cannot be neglected even in the weak noise limit,
in contrast to the corresponding terms for the longitudinawhere the normalization constaftis given by
fluctuationséx;. A
. . - i o

. _As WI2|| be _ve2r|f|ed at.the end of our.derl_va_tlon, the con sz exp{— L~ APy +3 77|4)}d277- (18)
dition (y7)> (%) holds in the weak noise limit. Therefore, D
the swarm velocity is mostly influenced by the transvers
fluctuations and we have approximat&fy=1-(y?). Substi-
tuting this into Eqg.(10), we get

Swhen the probability distribution is known, the second sta-
tistical moment can be calculated as

Vi — (V2 — YOy +ay; = (1), (12) (n? = f | 72P(, 7). (19

The stochastic differential equatidh?) does not include . S
longitudinal fluctuationsdx; and, furthermore, fluctuations Because the stationary probability distributitiv) depends
for different particles are not coupled here. For subsequenton {|7%), this is the equation which should be solved to
analysis of this differential equation, we drop the indices andletermine this statistical moment. Let us substitytepe’?
write it as and w?=a. Then |7|=p and d?5=p dp d¢. Therefore, Eq.
(19) takes the form

Y- () -V)y+ay=&u (13 }
3 _ (a2 _ 2\ 2 4
with (&(t)& (t))=2Ds(t—t"). Here we have assumed that sta- fo p”ex - (@/D)(= Xp%)p”+ 3p%) Jdp
tistical averaging is equivalent to averaging over the en- (PP =— (20)
semble. f exfd - (a%/D)(- 4{p?)p? + 3p*)]d
The approximate solution for the probability distribution 0 pex Ple+ 3

of variabley in the statistical stationary state can be derived _ _ _

for this equation assuming that the parametedetermining  Introducing the variableu=p(|7)~*2, Eqg. (20) is trans-
the oscillation frequency, is largéa>1). We introduce formed to

slowly varying amplitudes .

f u® exfd— v(- 4u? + 3u®)]du

1==2 , (21)

wherew=va> 1. Substituting this into Eq13) and keeping f uexg - ¥(- 4u? + 3u%)]du
only the resonant terms of the highest ordemwinwe obtain 0

a stochastic evolution equation for the transverse complex

oscillation amplitudes where

y(t) = n(t)e + 7 (He! (14)

051904-5
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a2 01 . . , ,
v=5 ). (22
0.08 - e 4
Numerical solution of Eq(21) yields »=0.22. Whenv is o°
known, Eq.(22) determines|#|?) as 0.06 |- e i
4 o °
(|72 = 12DV2%a71, (23) L ool 3 © |
S
Using the definition(14) of variable 7, we find thatS, '<><>-<'><>
=(y?)=2(| 7). Thus, we finally obtain the analytical estimate 0.02 - .
for the transverse dispersion of the swarm in the weak noise
lim It’ 0 0.002 0.004 0.006 0.008 0.01
Dl/2 D
S =k—, 24
S (24) 0.1 ey
where the numerical coefficient ie=21/2=0.94. 0.01L o3
The longitudinal dispersio8;=(x?) is approximately de- [ - ]
termined by the linear stochastic differential equatien A 0.001 0099-'9 b
straightforward derivation foa>1 yields for this property - ni o 09%° 1
the analytical estimate 0T 0%°
| 00000
D 1075 F ooooooo 3
S‘ = 5 (25) 10_6 N 00000000 ]
o ;
We see that in the limiD — 0 the longitudinal dispersion is [ ! . !

indeed much smaller than the transverse dispersion of the 10-° 10-° 10~ 0.001 0.01
traveling swarm, as assumed in the above derivation. D

Note that, _fora>1, s_tatlstlcal d!sper3|ons_ 20f transverse FIG. 7. Dispersions of swarm velocities {a) transversal and
and longitudinal velocity fluctuationsV, =(y%) and W, () jongitudinal directions as functions of the noise intensity. The
=(&°) areW, =aS, andW,=aS. Therefore, in the consid- symbols show the simulation data. The dotted lines are the theoreti-
ered weak noise limit they are given by, =«D¥? andW,  cally predicted power law dependences.
=D/2. Comparing these analytical estimates with the simu-

lations in Fig. 7, we find that they agree well with the corre-5nqom motion. This behavior resembles the breakdown of
sponding numerical data. For the transverse dispersiofyansiational motion which was previously seen for the one-
agreement is found in a wide interval of noise intensities 4imensional systerf40]. In contrast to the one-dimensional

The analytical expression for the longitudinal dispersioncase, we could not, however, analytically treat this transition,

holds, on the other hand, only for very weak noise. because of the strong fluctuations in the transverse direction.
Although our results are obtained in a model with har-
V. CONCLUSIONS monic attractive interactions, they are also applicable for

. - . . models with finite-range attractive interactions between the
We have studied statistical properties of localized swarm g

. N - . ) X f)articles, provided that the size of a localized swéirm, the
with long-range attractive interactions in two-dimensional

. statistical dispersion of the coordinates of its particles with

media. Our numerical simulations show that the swarm 'Srespect to the mass centés much smaller than the interac-

fects can be expected for swarms in three-dimensional me-
Bia. It would be interesting to see whether the discussed be-

. ; e i . . havior is indeed characteristic for real biological swarms
sity D, whereas its longitudinal dispersion depends linearly, i, 1ong-range interactions between individual organisms,
onD in the limit D— 0 and remains therefore much smaller o, v o< hird flocks or fish schools

in this limit. Hence, for weak noise the traveling swarm is

strongly squeezed along the direction of its mass motion. ACKNOWLEDGMENTS
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