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We consider a model of active Brownian agents interacting via a harmonic attractive potential in a two-
dimensional system in the presence of noise. By numerical simulations, we show that this model possesses a
noise-induced transition characterized by the breakdown of translational motion and the onset of swarm
rotation as the noise intensity is increased. Statistical properties of swarm dynamics in the weak noise limit are
further analytically investigated.
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I. INTRODUCTION

In different natural and social systems, agents form
groups characterized by cooperative coherent motionf1g.
Such collective swarm motions have been observed and in-
vestigated in bacterial populationsf2–6g, in slime molds
f7–10g, for antsf11,12g and fishf13–15g, in the motion of
pedestriansf16g, and for the car trafficf17g. To describe
these phenomena, various models of collective coherent mo-
tion in populations of self-propelled or self-driven particles
have been proposedsseef18,19gd. Some of them are formu-
lated in terms of interacting automata located on a lattice or
having continuous coordinatesf20–23g. A different class of
models is based on dynamical equations for individual self-
propelled particles, including velocity-dependent negative
friction terms to account for their active motion and assum-
ing that interactions between the particles are described by
some binary potentials. This latter approach has been used to
phenomenologically characterize motion of biological organ-
isms f24,25g, individual blood cellsf26,27g, and humans
f16,28g, and to describe the behavior of physical particles
with energy depotsf29–32g. Effective dynamical equations
with velocity-dependent friction could be approximately de-
rived for floating particles which propel themselves by re-
leasing surfactant into the mediumf33g. Continuum approxi-
mations to discrete particle models, hydrodynamical models
of active fluids, have been proposedf19,34–38g.

The common property of all swarm models is that they
show the emergence of coherent collective flows starting
from a disordered state with random velocity directions of
individual particlessagentsd. Such kinetic transitions have
been extensively investigated for automata systemsf20,39g
and in the framework of hydrodynamicsf34,37g. The ordered
states of swarms can represent simple translational motion or
be characterized by vortex flows. Both spatially distributed
and localized swarm states are possible. In a distributed state,
the population fills the entire available medium. In contrast
to this, the population forms compact spatial groups in a

localized state. An interesting example of a localized swarm
state is a rotating flock of finite extent, seen in the simula-
tions of a discrete model of self-propelling particles and de-
scribed analytically within a continuum active fluid approxi-
mation f23g ssee alsof19gd.

Localized states of swarms may undergo transitions lead-
ing to new dynamical regimes, when the system parameters
or the noise intensity are gradually changed. In a previous
publication f40g, a noise-induced transition from the local-
ized state with translational motion to a state with incoherent
oscillations without translational motion was investigated
numerically and analytically for a one-dimensional system of
interacting self-propelled particles. In the present article, we
extend investigations of this system to two spatial dimen-
sions. We study here a population of self-propelled particles
interacting via a parabolic interaction potential correspond-
ing to linear attracting forces between the pairs. In the ab-
sence of noise, this dynamical system has two kinds of at-
tractors, corresponding, respectively, to a compact traveling
state of the entire population and to a state where it rotates as
a vortex without any global translational motion. The aim of
our study is to investigate the effects of noise on translational
swarm motion. We find that the system is highly sensitive to
stochastic forces. When noise is present, the traveling swarm
is a cloud of particles characterized by different dispersions
in the directions parallel and transverse to the direction of
translational motion. Our numerical simulations confirmed
by an approximate analytical study show that the mean-
square transverse dispersion of a swarm is proportional to the
square root of the noise intensity, whereas its dispersion
along the direction of motion depends linearly on the noise
intensity. Therefore, for weak noises the swarm looks like a
pancake oriented orthogonally to the motion direction. When
the noise is increased, the swarm gradually acquires a more
symmetric shape. For strong noise, we find that the transla-
tional motion of a swarm becomes suddenly impossible and
is abruptly replaced by a rotational regime with a vortex
flow. The detailed formulation of the model is presented in
the next section. In Sec. III we describe the results of nu-
merical simulations. The statistical properties of a traveling
swarm in the weak noise limit are approximately explained
by an analytical theory which is constructed in Sec. IV. The*Electronic address: udo.erdmann@physik.hu-berlin.de
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paper ends with conclusions and discussion of the obtained
results.

II. THE MODEL

We consider a swarm formed byN identical self-propelled
particles of unit mass interacting via an attractive parabolic
pair potential. The dynamics of the system is given by the
following set of evolution equations:

ṙ i = vi , s1ad

v̇i = Fi −
a

N
o
j=1

N

sr i − r jd + jistd. s1bd

The forcesFi depend on the particle velocity and are intro-
duced to take into account active motion of particles. We
choose them in the form

Fi = s1 − vi
2dvi , s2d

so that, in the absence of noise and interactions, the particle
acquires the unit velocityv=1. Additionally, the particles are
subject to stochastic white forcesji of strengthD which are
independent for different particles and are characterized by
the correlation functions

kjistdl = 0, kjistdj jst8dl = 2Ddst − t8ddi j .

This model has previously been introduced inf40g. It is
phenomenological, but rather general because it can be
viewed as a normal form for a population of particles near a
supercritical bifurcation corresponding to spontaneous onset
of active motionsseef19gd. In this model, attractive interac-
tions between particles have an infinite range and grow lin-
early with the separation between them. Because we shall
consider only spatially localized states of the population, our
results will hold, however, also for the situations when inter-
actions are characterized by a finite range, but it is much
larger than the mean swarm diameter. It should be noted that,
in a different context, the models1d has been considered
already by Rayleighf41g.

The study of the one-dimensional version of the models1d
has shown that, as the noise intensityD is increased, spon-
taneous breakdown of translational swarm motion takes
place heref40g. Some statistical properties of translational
swarm motion in the two-dimensional models1d swith a
slightly different choice of the forcesFid have subsequently
been discussedf42g. For the case of two interacting particles
sN=2d, the rotational modes were described inf32g, where
simulations for small rotating clusters consisting of 20 par-
ticles have also been reported. The aim of the present work is
to perform systematic numerical and analytical investiga-
tions of the behavior described by this two-dimensional
model.

III. NUMERICAL SIMULATIONS

Numerical integration of Eqs.s1d was performed using
the Euler scheme with the constant time step of 0.001. In all
simulations, the total number of particles was fixed toN

=300 and the coefficienta specifying the strength of inter-
actions between the particles was set toa=100. To produce a
traveling localized state of the swarm, special initial condi-
tions were used. At timet=0, all particles had identical po-
sitions and velocities and the noise was switched only a little
later, at timet=30.

Several statistical characteristics of the swarm were moni-
tored during simulations. The center of massR of the swarm
and its mean velocityV at time t were defined asRstd
=s1/Ndoir istd andVstd=s1/Ndoivistd, respectively. Because
the cloud of traveling particles in the presence of noise was
anisotropic, we also determined its instantaneous mean-
square dispersions in the directions parallelsSid and orthogo-
nal sS'd to the direction of its instantaneous mean velocity
V. They were defined as

Sistd =
1

NV2stdoi=1

N

hfr istd − Rstdg ·Vstdj2, s3ad

S'std =
1

NV2stdoi=1

N

hfr istd − Rstdg 3 Vstdj2. s3bd

Additionally, angular momenta of all particles with respect to
the mass center were determined as

L istd = fr istd − Rstdg 3 fvistd − Vstdg. s4d

Figure 1sad shows the time dependence of the magnitude
V= uV u of the mean swarm velocity for two simulations with
different noise. When the noise is relatively weaksD
=0.067d, its introduction leads to some fluctuations in the
instantaneous swarm velocity and a decrease of its average
level. If a stronger noisesD=0.07d is applied, the swarm
velocity first behaves as for the weaker noise, but then
abruptly drops down to a value close to zero. This sudden
transition corresponds to the breakdown of translational mo-
tion of the swarm. In Fig. 1sbd we have plotted the time-
averaged swarm velocitykVl as a function of the noise in-
tensity D. The average velocity gradually decreases with
noise, until the breakdown occurs at 0.067,D,0.070.

In the state with translational motion at relatively weak
noise, the direction of the swarm motion does not remain
constant with time. The swarm travels along a complex tra-
jectory, part of which is shown in Fig. 2ssuch trajectories
should correspond to the Brownian motion of the entire
swarmd. In the inset in this figure, we display the distribution
of particles in the swarm at some time moment. It can be
noticed that the cloud of particles is significantly squeezed
along the direction of swarm motion.

Figure 3 shows the computed average longitudinalsSid
and transversesS'd dispersions as functions of the noise in-
tensity D. For weak noise,S'@Si so that the swarm is
strongly squeezed. As noise increases, the shape of the
swarm becomes more symmetric and the transversal disper-
sion approaches the dispersion along the direction of trans-
lational motion. Finally, after the breakdown of translational
motion has taken place for a sufficiently strong noise, the
swarm becomes statistically circularsS'=Sid.
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The sequence of snapshots in Fig. 4 displays temporal
evolution of the swarm when the noise intensity exceeds the
breakdown threshold. Initially, the swarm is traveling and its
shape is similar to that characteristic for the weaker noisescf.
Fig. 2d. However, in the course of time the swarm slowly
acquires a ring shape, with particles rotating around its cen-
ter. This rotating ring structure corresponds to a state where
translational motion of the entire swarm is already absent.

A different visualization of the process accompanying the
breakdown of translational motion and the transition to a
rotating swarm is chosen in Fig. 5. Here we show the trajec-
tory of motion of the center of mass of the swarmssolid lined
together with the trajectory of motion of one of its particles
sdashed lined. We see that, in a traveling swarm, the particles
perform irregular oscillations around its instantaneous mass
center. When the translational motion is terminated and the
rotating ring is formed, such oscillations become trans-
formed into rotations around the ring center.

To provide statistical description of particle motions in the
traveling and rotating states of the swarm, angular momen-
tum distributionsPsLd have been computed. For the state
with translational motion, the distribution has a single central

peak atL=0 fFig. 6sadg. In contrast to this, in the rotational
state the distribution has two symmetrically placed peaks
corresponding to a certain nonvanishing momentumfFig.
6sbdg. Note that the particles inside the ring are rotating in
both the clockwise and counterclockwise directions, and the
numbers of particles rotating in each direction are approxi-
mately equal. Thus, the swarm does not rotate as a whole and
its total angular momentum remains zero on the average.
This behavior is a consequence of the fact that only long-
range attractive interactions between particles are present in
the considered model. It can be expected that, if short-range
repulsive interactions are additionally introduced, the break-
down of the rotational symmetry in the ring would occur and
one of the rotation directions would be selectedf32g.

IV. THE WEAK NOISE LIMIT

Our numerical simulations have shown that, for weak
noise, the swarm is strongly squeezed in the direction along

FIG. 1. sad Time evolution of the mean velocity of a swarm
beforessolid line, D=0.067d and aftersdashed line,D=0.070d the
stochastic breakdown of the translational mode.sbd Mean velocity
of the swarm with increasing noise strength. At a critical noise
strength a sharp transition in the behavior of the swarm occursssee
also Fig. 4d.

FIG. 2. Motion of the center of mass of the swarms300 par-
ticlesd within a certain time window for noise below a critical one.
For t=1140 the corresponding snapshot of the swarm is shown. The
big black arrow in the inset shows the mean swarm velocity; the
noise intensity isD=0.067.

FIG. 3. Behavior of the longitudinalfsolid line s1dg and trans-
versalfdashed lines3dg dispersions of the swarm with increasing
noise.
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its center-of-mass motion and its longitudinal and transverse
dispersions are strongly different. Below we derive approxi-
mate analytical expressions forSi andS' in the limit of the
small noise intensityD→0.

First, we note that in this limit the motion of the center of
mass of the swarm will remain approximately linear within
very long times or, in other words, the swarm velocityV
remains approximately constant on the short time scales
characteristic for the motions of individual particles inside
the traveling swarm. We introduce the coordinate system in
such a way that itsx axis is parallel to the direction of the
swarm motion and itsy axis is orthogonal to it. The coordi-
natesxi and yi of all particles forming the swarm can be
written asxi =X+dxi and yi =Y+dyi whereX and Y are the
coordinates of the swarm centerR. By our choice, we have
Y=0, so thatyi =dyi.

To derive the evolution equation forX, we notice that

Xstd =
1

N
o
i=1

N

xistd ; kxistdl. s5d

Summing up the evolution equations for allxi, we approxi-
mately obtain

Ẍ − s1 − Ẋ2dẊ − 3kḋxi
2lẊ − kẏi

2lẊ = 0 s6d

where we have neglected the terms with higher powers of the

velocity fluctuationsḋxi and ẏi.

In the statistical steady state,Ẋ=V=const and Eq.s6d is
reduced to the equation

fs1 − V2d − 3kḋxi
2l − kẏi

2lgV = 0 s7d

determining the velocity of swarm motion in the presence of
noise. Its solution for the traveling swarmsVÞ0d is

V2 = 1 − 3kḋxi
2l − kẏi

2l. s8d

FIG. 4. Several sequential snapshots of a swarm with 300 par-
ticles during the transition from translational motion to the rota-
tional mode; the noise intensity isD=0.070.

FIG. 5. The trajectories of the center of massssolid lined and of
a single particlesdashed lined are shown above the critical noise
strengthsfor D=0.070d.

FIG. 6. Distribution of angular momenta of the particlessad in
the travelingsD=0.067d and sbd rotating sD=0.070d swarms.
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The evolution equation fordxi can be obtained by sub-
tracting Eq.s6d from the equation for the variablexi in the
model s1d. Keeping only the leading terms, linear in devia-
tions from the mass center, we get

d̈xi + 2ḋxi + adxi = ji
xstd. s9d

This is an evolution equation for a damped harmonic oscil-
lator. Note that fluctuations ofxistd are not coupled to the
transverse componentyistd.

In a similar way, the evolution equation for the transverse
deviationsyistd can be obtained,

ÿi − s1 − V2dẏi + 2Vḋxiẏi + ẏi
3 + ayi = ji

ystd. s10d

In this equation, we have retained nonlinear terms. This is
done because such terms are essential for the damping of
oscillations of the transverse component.

Indeed, if such terms were neglected, we would have

ÿi − s1 − V2dẏi + ayi = ji
ystd. s11d

Because, as follows from Eq.s8d, we haveV2,1, oscilla-
tions in yi will then exponentially grow with time. Thus,
nonlinear terms play a principal role for transverse fluctua-
tions and cannot be neglected even in the weak noise limit,
in contrast to the corresponding terms for the longitudinal
fluctuationsdxi.

As will be verified at the end of our derivation, the con-

dition kẏi
2l@ kḋxi

2l holds in the weak noise limit. Therefore,
the swarm velocity is mostly influenced by the transverse
fluctuations and we have approximatelyV2=1−kẏi

2l. Substi-
tuting this into Eq.s10d, we get

ÿi − skẏi
2l − ẏi

2dẏi + ayi = ji
ystd. s12d

The stochastic differential equations12d does not include
longitudinal fluctuationsdxi and, furthermore, fluctuations
for different particlesi are not coupled here. For subsequent
analysis of this differential equation, we drop the indices and
write it as

ÿ − skẏ2l − ẏ2dẏ + ay= jstd s13d

with kjstdj8stdl=2Ddst− t8d. Here we have assumed that sta-
tistical averaging is equivalent to averaging over the en-
semble.

The approximate solution for the probability distribution
of variabley in the statistical stationary state can be derived
for this equation assuming that the parametera, determining
the oscillation frequency, is largesa@1d. We introduce
slowly varying amplitudes

ystd = hstdeivt + h*stde−ivt s14d

wherev=Îa@1. Substituting this into Eq.s13d and keeping
only the resonant terms of the highest order inv, we obtain
a stochastic evolution equation for the transverse complex
oscillation amplitudes

ḣ = v2kuhu2lh −
3

2
v2uhu2h + zstd s15d

where the complex-valued white noisezstd has correlation
functions

kzstdl = 0, kzstdzst8dl = 0, kzstdz*st8dl =
D

2v2dst − t8d.

This stochastic Langevin equation corresponds to the fol-
lowing Fokker-Planck equation for the probability density
P=Psh ,h* ,td:

]P

]t
= −

]

]h
FvSkuhu2lh −

3

2
uhu2DhPG

−
]

]h* FvSkuhu2lh −
3

2
uhu2Dh*PG +

1

2v2D
]2P

]h ]h* .

s16d

The stationary solutionP̄ of the Fokker-Planck equation
reads

P̄ =
1

Z
expF−

v4

D
s− 4kuhu2luhu2 + 3uhu4dG s17d

where the normalization constantZ is given by

Z =E expF−
v4

D
s− 4kuhu2luhu2 + 3uhu4dGd2h. s18d

When the probability distribution is known, the second sta-
tistical moment can be calculated as

kuhu2l =E uhu2P̄sh,h*dd2h. s19d

Because the stationary probability distributions17d depends
on kuhu2l, this is the equation which should be solved to
determine this statistical moment. Let us substituteh=reif

and v2=a. Then uhu=r and d2h=r dr df. Therefore, Eq.
s19d takes the form

kr2l =

E
0

`

r3 expf− sa2/Dds− 4kr2lr2 + 3r4dgdr

E
0

`

r expf− sa2/Dds− 4kr2lr2 + 3r4dgdr

. s20d

Introducing the variableu=rkuhu2l−1/2, Eq. s20d is trans-
formed to

1 =

E
0

`

u3 expf− ns− 4u2 + 3u4dgdu

E
0

`

u expf− ns− 4u2 + 3u4dgdu

, s21d

where
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n =
a2

D
kuhu2l2. s22d

Numerical solution of Eq.s21d yields n.0.22. Whenn is
known, Eq.s22d determineskuhu2l as

kuhu2l = n1/2D1/2a−1. s23d

Using the definitions14d of variable h, we find that S'

=ky2l=2kuhu2l. Thus, we finally obtain the analytical estimate
for the transverse dispersion of the swarm in the weak noise
limit,

S' = k
D1/2

a
, s24d

where the numerical coefficient isk=2n1/2.0.94.
The longitudinal dispersionSi=kdx2l is approximately de-

termined by the linear stochastic differential equations9d. A
straightforward derivation fora@1 yields for this property
the analytical estimate

Si =
D

2a
. s25d

We see that in the limitD→0 the longitudinal dispersion is
indeed much smaller than the transverse dispersion of the
traveling swarm, as assumed in the above derivation.

Note that, fora@1, statistical dispersions of transverse
and longitudinal velocity fluctuationsW'=kẏ2l and Wi

=kdẋ2l areW'=aS' andWi=aSi. Therefore, in the consid-
ered weak noise limit they are given byW'=kD1/2 andWi

=D /2. Comparing these analytical estimates with the simu-
lations in Fig. 7, we find that they agree well with the corre-
sponding numerical data. For the transverse dispersion,
agreement is found in a wide interval of noise intensities.
The analytical expression for the longitudinal dispersion
holds, on the other hand, only for very weak noise.

V. CONCLUSIONS

We have studied statistical properties of localized swarms
with long-range attractive interactions in two-dimensional
media. Our numerical simulations show that the swarm is
highly sensitive to the action of noise. Even very weak noise
leads to strong dispersion of the swarm along the direction
orthogonal to the direction of its translational motion. The
approximate analytical theory predicts that the transverse
dispersion of aswarm increases asÎD with the noise inten-
sity D, whereas its longitudinal dispersion depends linearly
on D in the limit D→0 and remains therefore much smaller
in this limit. Hence, for weak noise the traveling swarm is
strongly squeezed along the direction of its mass motion.
This analytical result is confirmed by numerical simulations.

Increasing the noise intensityD, we find that translational
motion breaks down when a certain critical intensity is
reached. After the breakdown, the translational motion is
stopped and instead the swarm goes into a rotational mode
where the center of mass of the swarm shows only weak

random motion. This behavior resembles the breakdown of
translational motion which was previously seen for the one-
dimensional systemf40g. In contrast to the one-dimensional
case, we could not, however, analytically treat this transition,
because of the strong fluctuations in the transverse direction.

Although our results are obtained in a model with har-
monic attractive interactions, they are also applicable for
models with finite-range attractive interactions between the
particles, provided that the size of a localized swarmsi.e., the
statistical dispersion of the coordinates of its particles with
respect to the mass centerd is much smaller than the interac-
tion radius. In this situation, a harmonic approximation of the
interaction potential can be applied. Moreover, similar ef-
fects can be expected for swarms in three-dimensional me-
dia. It would be interesting to see whether the discussed be-
havior is indeed characteristic for real biological swarms
with long-range interactions between individual organisms,
such as bird flocks or fish schools.
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FIG. 7. Dispersions of swarm velocities insad transversal and
sbd longitudinal directions as functions of the noise intensity. The
symbols show the simulation data. The dotted lines are the theoreti-
cally predicted power law dependences.
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